Chapter 28: Lipids In a slightly different order than in your textbook ## **Fatty Acids** | common name | shorthand
notations
#of C : # of C=C
#of C, location of C=C | line structure | comments | |------------------|--|----------------|--| | butyric acid | 4:0 | ОН | in butterfat | | lauric acid | 12:0 | ОН | in coconut oil | | myristic acid | 14:0 | он
ОН | in nutmeg oil | | palmitic acid | 16:0 | ОН | in palm oil | | palmitoleic acid | $16:1 \ C_{16}\Delta^9$ | ОН | in oils and fats | | stearic acid | 18:0 | ~~~~~ | beef tallow and
human fat | | oleic acid | $18:1\\ \mathrm{C}_{18}\Delta^9$ | ОН | olive oil, lard, and
human fat | | linoleic acid | $18:2 \\ C_{18}\Delta^{9,12}$ | ОН | in many vegetable
oils and linseed
oil | | α-linolenic acid | $18:3$ $C_{18}\Delta^{9,12,15}$ | ОН | the γ - isomer $\Delta^{6,9,12}$ is not as essential | | |--------------------------------|---|---|--|--| | arachidonic acid | $C_{20}\Delta^{5,8,11,14}$ | ОН | precursor to
prostaglandins,
prostacyclins, and
thromboxanes | | | eicosapentaenoic
acid [EPA] | $\begin{array}{c} \textbf{20:5} \\ \textbf{C}_{20} \boldsymbol{\Delta}^{5,8,11,14,17} \end{array}$ | try drawing it! all the C=C are cis | an (\omega-3) fatty acid | | | docosahexaenoic
acid [DHA] | $\begin{array}{c} 22:6 \\ C_{22}\Delta^{4,7,10,13,16,19} \end{array}$ | try drawing it! all the C=C are cis | an (ω-3) fatty acid | | | | | Waxes | | | | beeswax | is actually a mixture of fatty esters and hydrocarbons. see below for a typical component, where the acid and the alcohol both have 26 carbons; the length of the fatty acid can range from 18? to 36 C and the alcohol from 24 to 36 C | | a most useful
material!
[to us as well as to
bees] | | | ~~~ | ~~~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | | | | GI | ycerolipids | | | | class | | | | | | triglyceride | R2´ | $\bigcap_{O} \bigcap_{R1} \bigcap_{O} R3$ | if solid, it's called
a fat; if liquid, an
oil. Melting point
depends on chain
length and degree
of unsaturation. | | | diglyceride | ŀ | R1 O $R3$ | formed during fat
digestion and used
as food additive
[emulsifier] | | | monoglyceride | R2 OHOH | formed during fat
digestion and used
as food additive
[emulsifier] | |--|---|---| | phosphatidic acid | $\begin{array}{c} O \\ R1 \\ O \\ O \\ O \\ O \\ O \end{array}$ | building block of glycerophospholipids | | lecithin
phosphatidyl
choline | $\begin{array}{c} O \\ O \\ O \\ O \\ O \\ O \end{array}$ | a key cell
membrane
component | | cephalin
phosphatidyl
ethanolamine | R2 O R1 O R1 O P ⁺ -O NH ₃ + | another common
cell membrane
component | | cephalin
phosphatidyl
serine | R2 O R1 O R1 O P+O- O NH ₃ + O-O O | another common
cell membrane
component | | phosphatidyl
inositol | R2 O R1 O R1 O O O O O O O O O O O O O O O O O O O | a less-common
membrane
component | |-----------------------------------|---|--| | | Sphingolipids | | | sphingosine | H_3C H_3C H_4 H_5 H_4 H_5 H_4 H_5 H_4 H_5 H_5 H_6 H_7 H_8 | the basic building
block of
sphingolipids, ~
never found free | | ceramide
N-acyl
sphingosine | H ₃ C OH NH OH OH | the usual form
from which
sphingolipids are
assembled | | sphingomyelin | H ₃ C CH ₃ H ₃ C CH ₃ H ₄ C NH H OH H ₅ C H ₇ C CH ₅ H OH N T CH ₃ | the only
phosphorus-
containing class
of sphingolipids | | cerebroside | H ₂ C HO HO HO OH | sugar is usually
gal, can be glc | | ganglioside | Really, really big | variable branched oligosaccharides | | | Steroids | | | |------------------------|--|---|--| | sterane | A B | | | | cholesterol | H_3^{21} CH_3^{20} $CH_3^$ | | | | sodium
taurocholate | OH OH OH OH OH OH OH OH | a "bile salt" sysnthesized in the liver from cholesterol and used to emulsify fat during digestion. | | | cortisol | HO CH ₃ IIOH | elevates blood
glucose levels,
promotes
breakdown of
muscle protein
and subsequent
catabolism of
amino acids;
antiinflammatory,
suppresses
immune system
activity. | | | | | | |--------------|---|---| | cortisone | CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ | semisynthetic
antiinflammatory
agent | | prednisolone | HO CH ₃ WIIOH | a synthetic
antiinflammatory
steroid | | aldosterone | HO CH ₃ | the main
mineralocorticoid;
promotes sodium
reabsorption and
potassium
excretion in the
kidneys | | testosterone | CH ₃ OH | the major
androgen;
increases muscle
mass and induces
male secondary
sexual
characteristics | | androstenedione | | alleged to be a human pheromone, it's also the stuff Mark McGwire used [baseball's drug policies are a lot laxer than those of other sports] | |--------------------|---|--| | Dianabol | CH ₃ OH CH ₃ | the most popular
synthetic anabolic
steroid; widely
abused, produces
"roid rage"
has been said to
cause liver cancer | | β-estradiol | HO CH ₃ OH | the major estrogen; prevents osteoporosis and may help protect against cardiovascular conditions. | | diethylstilbestrol | HO CH ₃ H ₃ C OH | synthetic compound with estrogen activity; caused cervical cancer in the daughters of women who took it as a fertility agent in the '50s and '60s; used to fatten beef cattle. | | progesterone | CH ₃ CH ₃ CH ₃ | the main
progestin;
prepares uterine
lining for
implantation | ## **Eicosanoids:** Prostaglandins, Prostacyclins, Thromboxanes, Leukotrienes the precursor to the 1- and 2arachidonic acid series; EPA is the precursor to the 3series has tissue-specific effects on smooth PGE₂ muscle .CH₃ HO HO has tissue-specific effects on smooth muscle; E and F $PGF_{2\alpha}$ types usually HO mutually antagonistic HÒ prostacyclins are produced by cells in the linings of PGI_2 blood vessels and prostacyclin antagonize thromboxane CH_3 activity Ē OH thromboxanes are produced by TXA_2 activated blood thromboxane platelets and HÔ activate other CH₃ platelets | LTA ₄ leukotriene A4 | C OH | | |---|--|--| | LTB ₄ leukotriene B4 | OH OH OH COH | | | LTC ₄
leukotriene C4,
a.k.a. SRS-A | O CON OH | the "slow-reacting
substance of
anaphylaxis" |