Table of Carbohydrates Names in bold represent sugars whose structures you should learn! | Names in bold represent sugars whose structures you should learn: | | | | |---|-----------------------------------|---|---| | name | Fischer projection | Haworth projection | comments | | D-glyceraldehyde | H O
H OH
CH ₂ OH | only cyclic sugars can
have a Haworth projection | to determine whether a sugar is of the D- or L- type, look at the – OH group on the lowest chiral center in the Fischer projection | | dihydroxyacetone | CH₂OH
├=O
CH₂OH | in the standard Fisch
carbohydrates, the aldehydd
ketoses, the ketone group i
possible; for amino acids, t
the to | e group is at the top; for
is as close to the top as
the carboxyl group is at | | furan
a cyclic unsaturated
ether | | O | sugars which form
cyclic hemiacetals or
hemiketals with 5-
membered rings are
called "furanoses" in
analogy with furan | | furanose : basic depiction | | | the standard orientation in the Haworth projection is with the ring oxygen at the top, representing the back edge of the molecule. C-1 is at the right. The ring atoms at the bottom are the front edge of the molecule. Shading has been omitted from the structures below for clarity. | | γ-pyran
a cyclic unsaturated
ether | | 0 | sugars which form
cyclic hemiacetals or
hemiketals with 6-
membered rings are
called "pyranoses" in
analogy with pyran | | pyranose : basic depiction | | | the standard orientation in the Haworth projection is with the ring oxygen at the top right, representing the back edge of the molecule. C-1 is at the right. The ring atoms at the bottom are the front edge of the molecule. Shading has been omitted from the structures below for clarity. | | D-ribose | H O
H OH
H OH
H OH
CH ₂ OH | only cyclic sugars can
have a Haworth projection | one of eight possible aldopentoses, it's the easiest to remember because all the –OH groups are on the right. | |---------------------------|---|--|--| | β-D-ribofuranose | HO H H—OH O H—OH O CH ₂ OH | но он он
он он | In RNA, the –OH at C-1 is replaced by N-1 of a pyrimidine base or N-9 of a purine base; the –OH on C-3 and C-5 are converted to phosphate esters | | shown to the right of the | vertical axis, the anomer | g manner: In the Fischer projectic —OH is on the left. In the last the terminal —CH ₂ OH grou | Haworth projection, the | | D-2-deoxyribose | H O H OH CH ₂ OH | HO OH H | found in DNA; the lack
of the –OH at C-2
makes DNA much more
stable to alkaline
hydrolysis than RNA is. | | D-glucose | H O H OH H OH OH | Only cyclic saccharides
can have a Haworth
projection | the most common and
most important of all
the monosaccharides | | α-D-glucopyranose | H OH H OH HO OH H OH CH ₂ OH | HO
HOH HOH
HOHOH | the alpha-structure is conserved in maltose, sucrose, amylose, amylopectin, and glycogen. | | | | | 1 | |--|---|---|---| | β-D-glucopyranose | HO H
H—————————————————————————————————— | HO
H OH H
H OH | in solution, there is a mixture of ~2/3 β and ~1/3 α with <1% openchain form present. The beta-structure is conserved in cellulose | | L–glucose | H O H H O H HO H CH ₂ OH | only cyclic saccharides
can have a Haworth
projection | L- sugars are the COMPLETE enantiomers [mirror images] of the corresponding D-sugar of the same name. You'd starve to death if this was the sugar you ate. | | β-L-glucopyranose | H OH HO—H OH—H HO—H CH ₂ OH | H OH OH OH | L- sugars are the COMPLETE enantiomers [mirror images] of the corresponding D-sugar of the same name. | | D-galactose | H O
H OH
HO H
HO OH | only cyclic saccharides
can have a Haworth
projection | a common sugar in nature, it makes up half of the disaccharide lactose. A serious disorder called galactosemia results when some individuals have a hereditary inability to | | β-D-galactopyranose | HO H H—OH HO—H O HO—H CH ₂ OH | HO
OH
OH
H OH | metabolize galactose. If not treated by total removal of galactose and lactose from the diet, irreversible mental retardation and even death can result. | | You can view Dave Woodcock's Chime structure of β-D-galactopyranose at | | | | You can view Dave Woodcock's Chime structure of β-D-galactopyranose at http://www.molecularmodels.ca/molecule/Natural_Products.htm | D-mannose | H O H HO H H OH OH | only cyclic saccharides
can have a Haworth
projection | derived from ivory
nuts and other
sources. | |--------------------|--|---|--| | D-fructose | ОН
НО—Н
Н—ОН
ОН | only cyclic saccharides
can have a Haworth
projection | the only ketohexose
on this list; sweetest
of all natural sugars | | β-D-fructofuranose | HO CH ₂ OH HO H O H OH H CH ₂ OH | но
он н он | note that C-1 is not part of the ring – the anomeric carbon is C- | | maltose | HO HO OH O | | for clarity,
unnecessary
hydrogens are often
not shown in Haworth
structures. Maltose is
produced by the
breakdown of starch
by enzymes in malted
[sprouted] barley, and
is fairly sweet. | | lactose | HO
OH
OH
H
OH
4-O-(β-D-galactor | HO OH OH OH OH OH | milk sugar; almost tasteless, but helps keep Ca ²⁺ in solution by complexing it. | | sucrose | HO OH OH OH O | in order to draw sucrose, either one of the rings has to be shown in nonstandard orientation or the length of the glycosidic bonds has to be exaggerated. I went for the latter option just to keep it simple. Since both anomeric positions are tied up in acetal linkages, sucrose is not capable of reducing Benedict's reagent. | |--------------|--|---| | sucrose | НО ОН ОН ОН | this is what sucrose
looks like when the
standard ring
orientation is
sacrificed for more
reasonable bond
lengths | | etc OH OH OH | OH OH OH OH OH | OH OH etc | a very small portion of an **amylose** chain. all the subunits are α -D-glucose and all the acetal links connect C-1 of one subunit to C-4 of the next subunit. Thus the linkage abbreviation $\alpha(1\rightarrow 4)$. Amylose is responsible for the formation of a deep blue color in the presence of iodine. very small portion of an **amylopectin-type** or **glycogen-type** polysaccharide showing two branch points [drawn closer together than they should be] Most linkages are still $\alpha(1\rightarrow 4)$, but the branch linkages are $\alpha(1\rightarrow 6)$. In glycogen, the branches occur at intervals of 8-10 glucose units, while in amylopectin the branches are separated by 10-12 glucose units. Natural **starches** are mixtures of amylose and amylopectin. very small portion of a **cellulose** chain. . all the subunits are β -D-glucose and all the acetal links connect C-1 of one subunit to C-4 of the next subunit. Thus the linkage abbreviation $\beta(1\rightarrow 4)$ | connect C-1 of one subunit to C-4 of the next subunit. Thus the linkage abbreviation $\beta(1\rightarrow 4)$ | | | | |--|--|-----------------------------------|---| | sorbitol | CH ₂ OH
H——————————————————————————————————— | | used as a noncaloric,
noncarieogenic
sweetener | | mannitol | CH ₂ OH
HO——H
HO——H
H——OH
H——OH
CH ₂ OH | | used as a laxative for
babies and by drug
dealers to cut heroin,
and other illegal drugs | | xylitol | CH ₂ OH
H——————————————————————————————————— | | used as a noncaloric,
noncarieogenic
sweetener | | glucosamine | H O H NH ₂ HO H OH OH CH ₂ OH | HO
OH
OH
NH ₂ | component of many
heteropolysaccharides,
including some found
in cartilage. You've
seen it advertised on
TV! | | N-acetylglucosamine | H—N
H—N
HO—H
H—OH
H—OH
CH ₂ OH | HO OH OH HN O | the repeating unit in chitin, the structural material of arthropod exoskeletons | | D-gluconic acid | O OH H OH HO H H OH H OH CH ₂ OH | OH OH | the Haworth projection is of gluconolactone, the cyclic ester form | |-------------------|---|---|--| | D-glucuronic acid | H O H OH H OH OH | OHOH OH structure of a glucuronidate conjugate of "R" | the body "conjugates" [attaches by a glycosidic link] this compound to many foreign substances to render them more water-soluble and thus excretable in urine. | | D-glucaric acid | O OH H OH HO H H OH OH OOH IsisDraw® and ACD Labs CI | | it's just here to torture
you with completeness! |